
Dr. Marques Sophie Algebra 1 Spring Semester 2017
Office 519 marques@cims.nyu.edu

Problem Set #3

1 Modular arithmetic

Exercise 1 :
Check that gcdpk,nq “ 1 and find rks´1 in Z{nZ when k “ 296, n “ 1317.

Solution :

gcdp296, 1317q “ gcdp133, 296q “ gcdp30, 133q
“ gcdp13, 30q “ gcdp4, 13q

1317 “ 4p296q ` 133
296 “ 2p133q ` 30
133 “ 4p30q ` 13
30 “ 2p13q ` 4
13 “ 4ˆ 3` 1

So gcdp296, 1317q “ 1, as claim. To find r, s at rp296q ` sp131q “ 1 work the calculation
backward

1 “ ´3p4q ` 1p13q
1 “ ´3p30´ 2p13qq ` 1ˆ 13 “ 7ˆ 13´ 3ˆ 30
1 “ 7p133´ 4p38q ´ 3p30q “ ´31p30q ` 7p133q
1 “ ´31p296´ 2p133qq ` 7p133q “ 69p133q ´ 31p296q
1 “ 69p1312´ 4p296qq ´ 31p296q “ 69p1317q ´ 307p296q

modulo n “ 1317 we have 1 ” 0 ´ 307p296q. We rewrite as 1 ” a ¨ 296 mod 1317 with
0 ď a ă 1317. Take a “ 1317 ´ 307 “ 1010 ; then 1010 ” ´307 pmod nq and we get
r296s´1 “ r1010s in Z{1317Z.

Exercise 2 :
Determine ras´1 for each of the multiplicative units ras “ r1s, r5s, r7s, r11s in Z{12Z.

Solution :
r1s´1 “ r1s. Since r11s “ r´1s “ ´r1s ; we have r11s´1 “ r11s (since p´1q2 “ 1 in any
commutative ring).
These are so easy to compute we can use simple trial and errors or the extended euclidean
algorithm to find that r5s´1 “ r5s, since 5 ˆ 5 ” 25 ” 1 mod 12. Similarly, r7s´1 “ r7s,
noting that r7s “ ´r5s “ r´1s ¨ r5s. Then r7s´1 “ r´1s´1 ¨ r5s´1 “ r´1s ¨ r5s “ r7s.
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Exercise 3 :
Identify all element in Z{18Z that have multiplicative inverse. Find r5s´1 in this system
by finding r, s such that 5r` 18s “ 1.

Solution :
rks has an inverse in Z{18Z ô k ‰ 0 and gcdpk, 18q “ 1. This ”group of units” U18
is tr1s, r5s, r7s, r11s “ r´7s, r13s “ r´5s, r17s “ r´1su. Although the extended GCD al-
gorithm would provide suitable r, s we have for example ´7p5q ` 2p18q “ 1 (you can
also use trial and error if you are lucky to find r, s quickly. Mod 18, r´7sr5s “ r1s and
r5s´1 “ r´7s “ r11s (representative normalized to be in range 0 ď k ď 18.

2 Rationals

Exercise 4 :
Prove that

?
3 is irrational.

Solution :
If not Dr, s P Z, such that s ‰ 0 and r3 “ r{3 and hence squaring both sides, 3 “ r2{s2 or
3s2 “ r2. We can assume that r and s have no prime divisor in common, otherwise, we may
cancel them thus we assume gcdpr, sq “ 1. Now, 3s2 “ r2. We can assume r and s have no
prime divisors in common, otherwise we may cancel them ; thus we assume gcdpr, sq “ 1.
Now 3s2 “ r2 ñ 3|r2 but since 3 is a prime this implies 3|r, then 32|r2, so that r2 “ m ¨ 32

for some m P Z. Thus, 3s2 “ 32 ¨ m. Canceling a ”3” from each side we get s2 “ 3 ¨ m
which implies 3|s2 ñ 3|5. Thus 3 would divide both r and s, contrary to our assumption
that r, s have no prime divisor in common. Contradiction. Conclusion,

?
3 cannot be rational.

3 Groups/Subgroups

Exercise 5 :
Which of the following set are groups ? (Explain your answer.)

1. pZ, ¨q ;

2. pR, ¨q ;

3. ppZ{7Zqˆ, ¨q ;

Solution :

1. In S3, p1, 2q ˝ p1, 3q maps 1 Ñ 3 Ñ 3, 2 Ñ 2 Ñ 1 and 3 Ñ 1 Ñ 2. So the product s
the 3-cycle p1, 3, 2q.

2. p1, 2q ˝ p1, 3q “ p1, 3, 2qp4qp5q “ p1, 3, 2q in S5 ;

3. p1, 5qp1, 4qp1, 3qp1, 2q maps 1 Ñ 2 Ñ ¨ ¨ ¨ Ñ 2, 2 Ñ 1 Ñ 3 Ñ ¨ ¨ ¨ Ñ 3, . . .
5 Ñ 5 . . . 5 Ñ 1, so the product is p1, 2, 3, 4, 5q is a 5-cycle.

Exercise 6 :
Prove that
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1. Knowing that pZ,`q is a group, prove that pZ{nZ,‘q is a group ;

2. Knowing that pR,`q is a group, prove that pRn,`q is a group ;

Exercise 7 :
Prove that

1. Prove that pΩn, ¨q is a subgroup of pCˆ, ¨q, where Ωn “ tz P C : zn “ 1u.
2. Prove that the orthogonal group pOnpRq “ tM P MnpRq : MMT “ Inu, ¨q is a

subgroup of pGLnpRq, ¨q.

3. Prove that the three-dimensional Heisenberg group of quantum mechanics
consists of all real 3ˆ 3 matrices of the form

A “

¨

˝

1 x z
0 1 y
0 0 1

˛

‚

with x, y, z P R forms a subgroup of pGLnpRq, ¨q.

4. Prove that if pG, ¨q is a group and S Ă G non empty subset,

(a) ZpGq “ tx P G : gx “ xg for all g P Gu is a subgroup of G ;

(b) ZGpSq “ tx P G : xs “ sx for all s P Su is a subgroup of G ;

(c) NGpSq “ tx P G : xSx´1 “ S u is a subgroup of G.

(d) If Hα (α P I) are subgroups of G, prove H “ XαPIHα is also a subgroup.

5. Suppose φ : pG, ¨q Ñ pG1, ˚q is a homomorphism of groups, (e identity element of
G and e1 identity element of G1), prove that

(a)
Kerpφq “ tx P G : φpxq “ e1u ,

is a subgroup of G
(b)

Rangepφq “ φpGq “ tφpxq : x P Gu

is a subgroup of G1.
Exercise 8 :

Evaluate the net action of the following product of cycles :

1. p1, 2qp1, 3q in S3 ;

2. p1, 2qp1, 3q in S5 ;

3. p1, 5qp1, 4qp1, 3qp1, 2q in S5 ;

Solution :

1. p1, 2q´1 “ p1, 2q since p1, 2q ˝ p1, 2q “ Id ;

2. p1, 2, 3q´1 “ p1, 3, 2q. Just check that p1, 2, 3q ˝ p1, 3, 2q “ Id ;

3. pi1, i2q
´1 “ pi1, i2q ; (The 2-cycle is its own inverse.)
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4. σ “ pi1, i2, . . . , ikq then σ´1 “ pi1, ik, ik´1, . . . , i2q (Just view as cyclic 1-step shifts in
the diagram at right : σ moves clockwise σ´1 moves counter clockwise.

Exercise 9 :
Find the inverses σ´1 in S5 :

1. p1, 2q ;

2. p1, 2, 3q ;

3. For any cycle pi1, i2q with i1 ‰ i2 ;

4. pi1, i2, . . . , ikq with ik ‰ il for k ‰ l.
Solution :

1. p1, 2q´1 “ p1, 2q since p1, 2q ˝ p1, 2q “ Id ;

2. p1, 2, 3q´1 “ p1, 3, 2q. Just check that p1, 2, 3q ˝ p1, 3, 2q “ Id ;

3. pi1, i2q
´1 “ pi1, i2q ; (The 2-cycle is its own inverse.)

4. σ “ pi1, i2, . . . , ikq then σ´1 “ pi1, ik, ik´1, . . . , i2q (Just view as cyclic 1-step shifts in
the diagram at right : σ moves clockwise σ´1 moves counter clockwise.
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