Dr. Marques Sophie Office 519

Algebra 1

Spring Semester 2017 marques@cims.nyu.edu

Problem Set #3

1 Modular arithmetic

Exercise 1:

Check that gcd(k, n) = 1 and find $[k]^{-1}$ in $\mathbb{Z}/n\mathbb{Z}$ when k = 296, n = 1317.

Solution :

$$gcd(296, 1317) = gcd(133, 296) = gcd(30, 133)$$

= $gcd(13, 30) = gcd(4, 13)$
$$1317 = 4(296) + 133$$

$$296 = 2(133) + 30$$

$$133 = 4(30) + 13$$

$$30 = 2(13) + 4$$

$$13 = 4 \times 3 + 1$$

So gcd(296, 1317) = 1, as claim. To find r, s at r(296) + s(131) = 1 work the calculation backward

$$\begin{array}{rcl} 1 &=& -3(4)+1(13) \\ 1 &=& -3(30-2(13))+1\times 13=7\times 13-3\times 30 \\ 1 &=& 7(133-4(38)-3(30)=-31(30)+7(133) \\ 1 &=& -31(296-2(133))+7(133)=69(133)-31(296) \\ 1 &=& 69(1312-4(296))-31(296)=69(1317)-307(296) \end{array}$$

modulo n = 1317 we have $1 \equiv 0 - 307(296)$. We rewrite as $1 \equiv a \cdot 296 \mod 1317$ with $0 \leq a < 1317$. Take a = 1317 - 307 = 1010; then $1010 \equiv -307 \pmod{n}$ and we get $[296]^{-1} = [1010]$ in $\mathbb{Z}/1317\mathbb{Z}$.

Exercise 2: Determine $[a]^{-1}$ for each of the multiplicative units [a] = [1], [5], [7], [11] in $\mathbb{Z}/12\mathbb{Z}$.

Solution :

 $[1]^{-1} = [1]$. Since [11] = [-1] = -[1]; we have $[11]^{-1} = [11]$ (since $(-1)^2 = 1$ in any commutative ring).

These are so easy to compute we can use simple trial and errors or the extended euclidean algorithm to find that $[5]^{-1} = [5]$, since $5 \times 5 \equiv 25 \equiv 1 \mod 12$. Similarly, $[7]^{-1} = [7]$, noting that $[7] = -[5] = [-1] \cdot [5]$. Then $[7]^{-1} = [-1]^{-1} \cdot [5]^{-1} = [-1] \cdot [5] = [7]$.

Exercise 3 :

Identify all element in $\mathbb{Z}/18\mathbb{Z}$ that have multiplicative inverse. Find $[5]^{-1}$ in this system by finding r, s such that 5r + 18s = 1.

Solution :

[k] has an inverse in $\mathbb{Z}/18\mathbb{Z} \Leftrightarrow k \neq 0$ and gcd(k, 18) = 1. This "group of units" U_{18} is $\{[1], [5], [7], [11] = [-7], [13] = [-5], [17] = [-1]\}$. Although the extended GCD algorithm would provide suitable r, s we have for example -7(5) + 2(18) = 1 (you can also use trial and error if you are lucky to find r, s quickly. Mod 18, [-7][5] = [1] and $[5]^{-1} = [-7] = [11]$ (representative normalized to be in range $0 \leq k \leq 18$.

2 Rationals

Exercise 4 : Prove that $\sqrt{3}$ is irrational.

Solution :

If not $\exists r, s \in \mathbb{Z}$, such that $s \neq 0$ and $r_3 = r/3$ and hence squaring both sides, $3 = r^2/s^2$ or $3s^2 = r^2$. We can assume that r and s have no prime divisor in common, otherwise, we may cancel them thus we assume gcd(r,s) = 1. Now, $3s^2 = r^2$. We can assume r and s have no prime divisors in common, otherwise we may cancel them; thus we assume gcd(r,s) = 1. Now $3s^2 = r^2 \Rightarrow 3|r^2$ but since 3 is a prime this implies 3|r, then $3^2|r^2$, so that $r^2 = m \cdot 3^2$ for some $m \in \mathbb{Z}$. Thus, $3s^2 = 3^2 \cdot m$. Canceling a "3" from each side we get $s^2 = 3 \cdot m$ which implies $3|s^2 \Rightarrow 3|5$. Thus 3 would divide both r and s, contrary to our assumption that r, s have no prime divisor in common. Contradiction. Conclusion, $\sqrt{3}$ cannot be rational.

3 Groups/Subgroups

Exercise 5 :

Which of the following set are groups? (Explain your answer.)

- 1. $(\mathbb{Z}, \cdot);$
- 2. $(\mathbb{R}, \cdot);$
- 3. $((\mathbb{Z}/7\mathbb{Z})^{\times}, \cdot);$

Solution :

- 1. In S_3 , $(1,2) \circ (1,3)$ maps $1 \rightarrow 3 \rightarrow 3$, $2 \rightarrow 2 \rightarrow 1$ and $3 \rightarrow 1 \rightarrow 2$. So the product s the 3-cycle (1,3,2).
- 2. $(1,2) \circ (1,3) = (1,3,2)(4)(5) = (1,3,2)$ in S_5 ;
- 3. (1,5)(1,4)(1,3)(1,2) maps $1 \rightarrow 2 \rightarrow \cdots \rightarrow 2$, $2 \rightarrow 1 \rightarrow 3 \rightarrow \cdots \rightarrow 3$, $\ldots 5 \rightarrow 5 \ldots 5 \rightarrow 1$, so the product is (1,2,3,4,5) is a 5-cycle.

Exercise 6 :

Prove that

- 1. Knowing that $(\mathbb{Z}, +)$ is a group, prove that $(\mathbb{Z}/n\mathbb{Z}, \oplus)$ is a group;
- 2. Knowing that $(\mathbb{R}, +)$ is a group, prove that $(\mathbb{R}^n, +)$ is a group;

Exercise 7 :

Prove that

- 1. Prove that (Ω_n, \cdot) is a subgroup of $(\mathbb{C}^{\times}, \cdot)$, where $\Omega_n = \{z \in \mathbb{C} : z^n = 1\}$.
- 2. Prove that the orthogonal group $(O_n(\mathbb{R}) = \{M \in M_n(\mathbb{R}) : MM^T = I_n\}, \cdot)$ is a subgroup of $(GL_n(\mathbb{R}), \cdot)$.
- 3. Prove that the three-dimensional Heisenberg group of quantum mechanics consists of all real 3×3 matrices of the form

$$A = \left(\begin{array}{rrr} 1 & x & z \\ 0 & 1 & y \\ 0 & 0 & 1 \end{array}\right)$$

with $x, y, z \in \mathbb{R}$ forms a subgroup of $(GL_n(\mathbb{R}), \cdot)$.

- 4. Prove that if (G, \cdot) is a group and $S \subset G$ non empty subset,
 - (a) $Z(G) = \{x \in G : gx = xg \text{ for all } g \in G\}$ is a subgroup of G;
 - (b) $Z_G(S) = \{x \in G : xs = sx \text{ for all } s \in S\}$ is a subgroup of G;
 - (c) $N_G(S)=\{x\in G: xSx^{-1}=S\,\}$ is a subgroup of G.
 - (d) If H_{α} ($\alpha \in I$) are subgroups of G, prove $H = \bigcap_{\alpha \in I} H_{\alpha}$ is also a subgroup.
- 5. Suppose $\phi : (G, \cdot) \to (G', *)$ is a homomorphism of groups, (*e* identity element of G and e' identity element of G'), prove that

(a)

$$\operatorname{Ker}(\phi) = \{x \in G : \phi(x) = e'\}$$
,

is a subgroup of G

(b)

$$\operatorname{Range}(\phi) = \phi(G) = \{\phi(x) : x \in G\}$$

is a subgroup of G'.

Exercise 8 :

Evaluate the net action of the following product of cycles :

- 1. (1,2)(1,3) in S_3 ;
- 2. (1,2)(1,3) in S_5 ;
- 3. (1,5)(1,4)(1,3)(1,2) in S_5 ;

Solution :

- 1. $(1,2)^{-1} = (1,2)$ since $(1,2) \circ (1,2) = Id$;
- 2. $(1,2,3)^{-1} = (1,3,2)$. Just check that $(1,2,3) \circ (1,3,2) = Id$;
- 3. $(i_1, i_2)^{-1} = (i_1, i_2)$; (The 2-cycle is its own inverse.)

4. $\sigma = (i_1, i_2, \dots, i_k)$ then $\sigma^{-1} = (i_1, i_k, i_{k-1}, \dots, i_2)$ (Just view as cyclic 1-step shifts in the diagram at right : σ moves clockwise σ^{-1} moves counter clockwise.

Exercise 9 :

Find the inverses σ^{-1} in S_5 :

- 1. (1,2);
- 2. (1,2,3);
- 3. For any cycle (i_1, i_2) with $i_1 \neq i_2$;
- 4. (i_1, i_2, \ldots, i_k) with $i_k \neq i_l$ for $k \neq l$.

Solution :

- 1. $(1,2)^{-1} = (1,2)$ since $(1,2) \circ (1,2) = Id$;
- 2. $(1,2,3)^{-1} = (1,3,2)$. Just check that $(1,2,3) \circ (1,3,2) = Id$;
- 3. $(i_1,i_2)^{-1}=(i_1,i_2)$; (The 2-cycle is its own inverse.)
- 4. $\sigma = (i_1, i_2, \dots, i_k)$ then $\sigma^{-1} = (i_1, i_k, i_{k-1}, \dots, i_2)$ (Just view as cyclic 1-step shifts in the diagram at right : σ moves clockwise σ^{-1} moves counter clockwise.